高级搜索:

联系我们

联系我们

电话:(852) 2838 3620

邮箱:sales@silverwing.com.hk

地址:香港新界葵涌葵昌路50号葵昌中心4楼02室

IGBT模块的结构及其原理

来源: 时间:2017-09-25 11:22:38 浏览次数:

    IGBT,绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor),它是由BJT(双极性三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件。


IGBT模块


    IGBT是一种大功率的电力电子器件,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。三大特点就是高压、大电流、高速。它是电力电子领域非常效应管。


IGBT定义

BJT(Bipolar Junction Transistor):双极性三极管,“双极性”是指工作时有两种带有不同极性电荷的载流子参与导电。

场效应管(FET):利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件,它仅靠半导体中的多数载流子导电,又称为单极性晶体管。

绝缘栅型场效应管(IGFET):栅极-源极,栅极-漏极之间采用SiO2绝缘层隔离,因此而得名。又因栅极为金属铝,所以又称为金属氧化物半导体场效应管。


IGBT发展历史比较:

产品

特点

SCR

功率容量大,目前的水平已达到7000V/8000A。但缺点是开关速度低,关断不可控,因强制换流关断使控制电路非常复杂,限制了它的应用。

GTO、GTR

它们都是自关断器件,开关速度比SCR高,控制电路也得到了简化。目前GTO和GTR的水平分别达到了6000V和6000A、1000V和400A。但是GTO的开关速度还是比较低,GTR存在二次击穿和不易并联问题。另外,它们共同存在驱动电流大,功耗损失大的问题。

VDMOS、SIT

具开关速度高,输入阻抗高、控制功率小、驱动电路简单等特点。但导电阻限制了它们的电流容量和功率容量。不过,人们利用超大规模IC技术把VDMOS的元胞尺寸做得很小(只有几个平方微米),大大增加了元胞的数量,减少了导通电阻,提高了电流容量。但是,功率容量还是很低。100V以下,VDMOS是最理想的开关器件。

IGBT

目前,IGBT器件已从第1代发展到第4代,它的工作频率可达到200KHz。它的功率容量从小功率(80-300A/500-1200V)的单管发展到超大功率(1000-1200A/2500-4500V)的模块,形成了系列化产品, 产品覆盖面非常大。


IGBT结构
IGBT模块

    上图所示为一个N沟道增强型绝缘栅双极晶体管结构, N+区称为源区,附于其上的电极称为源极(即发射极E)。N基极称为漏区。器件的控制区为栅区,附于其上的电极称为栅极(即门极G)。沟道在紧靠栅区边界形成。在C、E两极之间的P型区(包括P+和P-区)(沟道在该区域形成),称为亚沟道区(Subchannel region)。而在漏区另一侧的P+区称为漏注入区(Drain injector),它是IGBT特有的功能区,与漏区和亚沟道区一起形成PNP双极晶体管,起发射极的作用,向漏极注入空穴,进行导电调制,以降低器件的通态电压。附于漏注入区上的电极称为漏极(即集电极C)。

    IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP(原来为NPN)晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,切断基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N-沟道MOSFET,所以具有高输入阻抗特性。当MOSFET的沟道形成后,从P+基极注入到N-层的空穴(少子),对N-层进行电导调制,减小N-层的电阻,使IGBT在高电压时,也具有低的通态电压。


IGBT的工作原理


方法

    IGBT是将强电流、高压应用和快速终端设备用垂直功率MOSFET的自然进化。由于实现一个较高的击穿电压BVDSS需要一个源漏通道,而这个通道却具有很高的电阻率,因而造成功率MOSFET具有RDS(on)数值高的特征,IGBT消除了现有功率MOSFET的这些主要缺点。虽然最新一代功率MOSFET 器件大幅度改进了RDS(on)特性,但是在高电平时,功率导通损耗仍然要比IGBT 技术高出很多。较低的压降,转换成一个低VCE(sat)的能力,以及IGBT的结构,同一个标准双极器件相比,可支持更高电流密度,并简化IGBT驱动器的原理图。

导通
    IGBT硅片的结构与功率MOSFET 的结构十分相似,主要差异是IGBT模块增加了P+ 基片和一个N+ 缓冲层(NPT-非穿通-IGBT技术没有增加这个部分)。如等效电路图所示,其中一个MOSFET驱动两个双极器件。基片的应用在管体的P+和 N+ 区之间创建了一个J1结。 当正栅偏压使栅极下面反演P基区时,一个N沟道形成,同时出现一个电子流,并完全按照功率 MOSFET的方式产生一股电流。如果这个电子流产生的电压在0.7V范围内,那么,J1将处于正向偏压,一些空穴注入N-区内,并调整阴阳极之间的电阻率,这种方式降低了功率导通的总损耗,并启动了第二个电荷流。最后的结果是,在半导体层次内临时出现两种不同的电流拓扑:一个电子流(MOSFET 电流); 一个空穴电流(双极)。

关断
    当在栅极施加一个负偏压或栅压低于门限值时,沟道被禁止,没有空穴注入N-区内。在任何情况下,如果MOSFET电流在开关阶段迅速下降,集电极电流则逐渐降低,这是因为换向开始后,在N层内还存在少数的载流子(少子)。这种残余电流值(尾流)的降低,完全取决于关断时电荷的密度,而密度又与几种因素有关,如掺杂质的数量和拓扑,层次厚度和温度。少子的衰减使集电极电流具有特征尾流波形,集电极电流引起以下问题:功耗升高;交叉导通问题,特别是在使用续流二极管的设备上,问题更加明显。

    鉴于尾流与少子的重组有关,尾流的电流值应与芯片的温度、IC 和VCE密切相关的空穴移动性有密切的关系。因此,根据所达到的温度,降低这种作用在终端设备设计上的电流的不理想效应是可行的。

阻断与闩锁
    当集电极被施加一个反向电压时, J1 就会受到反向偏压控制,耗尽层则会向N-区扩展。因过多地降低这个层面的厚度,将无法取得一个有效的阻断能力,所以,这个机制十分重要。另一方面,如果过大地增加这个区域尺寸,就会连续地提高压降。 第二点清楚地说明了NPT器件的压降比等效(IC 和速度相同) PT 器件的压降高的原因。

    当栅极和发射极短接并在集电极端子施加一个正电压时,P/N J3结受反向电压控制,此时,仍然是由N漂移区中的耗尽层承受外部施加的电压。
 
    IGBT在集电极与发射极之间有一个寄生PNPN晶闸管。在特殊条件下,这种寄生器件会导通。这种现象会使集电极与发射极之间的电流量增加,对等效MOSFET的控制能力降低,通常还会引起器件击穿问题。晶闸管导通现象被称为IGBT闩锁,具体地说,这种缺陷的原因互不相同,与器件的状态有密切关系。


首页 | 关于我们 | 产品中心 方案供应商 | 新闻资讯| 联系我们   电话: (86)755-83438118

地址: 深圳市福田区天安数码时代大厦1716室 粤ICP备17091917号-1


 

                                          

Top