跟踪系统为何集成度高效的电源管理解决方案
来源:本站时间:2018/4/2 16:41:28
车辆跟踪系统非常适合监视一辆汽车或整个车队。跟踪系统由自动跟踪硬件和用于收集数据(如果需要的话,还有数据传输)的软件组成。
一、主动跟踪器与被动跟踪器
主动跟踪器和被动跟踪器收集数据的方式相同,也同样准确。这两种类型跟踪器的主要区别在于时间。
主动跟踪器也称为“实时”跟踪器,因为它们通过卫星或蜂窝网络发送数据,即时指示车辆位置。电脑屏幕可以实时显示车辆的移动。因此,如果企业希望提高运送效率并了解员工现场驾驶情况,那么主动跟踪是最佳选择。主动式跟踪器还具备一种“地理围栏”能力(把这种功能想象为类似“力场”),其可在汽车进入或离开某个预定位置时提供警示信号。另外,此类系统还能帮助防止车辆失窃或追回被盗车辆。当然,主动GPS跟踪设备比被动跟踪设备贵,而且需要按月支付服务费。
被动跟踪器价格较低,但数据存储量受限,不过它们更小,更易于隐藏。被动跟踪器在设备上存储信息,而不是向一个远程地点发送数据。这种跟踪器必须从车辆上拿下来,连到电脑上,才能查看其中存储的信息。这类系统适合出于工作目的跟踪里程的人,也适合希望减少车辆滥用的企业。另外,被动跟踪器也常常用来监察人员的行动(可以想象成侦探工作)。如果不需要即刻反馈,而是定期检查设备数据,那么被动跟踪器是个很好的选择。
无论哪一种类型的跟踪器,本质上都是便携式的,外形尺寸相对较小。因此需要电池AE电源,也需要备份功能以在万一断电时保存数据。由于给电池(通常是单节锂离子电池)充电需要较高的汽车系统电压和较大的电流,所以开关模式充电器是可取的,因为与线性电池充电IC相比,开关模式充电器充电效率较高,以功耗形式产生的热量较少。大体上,嵌入式汽车应用的输入电压可能高达30 V,有些甚至更高。在这些GPS跟踪定位系统中,一个充电器和常见的12 V至单节锂离子电池(典型值为3.7V)、针对高得多的输入电压(在发生源于电池漂移之电压瞬变的场合)的附加保护以及某种类型的备份能力将是理想的配置。
二、电池充电 IC 的设计问题
传统的线性拓扑电池充电器往往因其紧凑的占板面积、简单性和适中的成本而受到重视。不过,传统线性充电器有一些缺点,包括输入和电池电压范围受限、电流消耗相对较大、功耗过大(产生热量)、充电终止算法受限以及效率相对较低。开关模式电池充电器是很受欢迎的选择,因为这类充电器具备拓扑灵活性,可对多种化学组成的电池充电,充电效率高,因此最大限度减少了热量,可实现快速充电,另外还有很宽的工作电压范围。
当然,权衡总是存在的。开关充电器的缺点包括:成本相对较高、基于电感器的设计更加复杂、可能产生噪声以及解决方案占板面积较大。由于以上提及的开关充电器的优点,现代铅酸电池、无线电源、能量收集、太阳能充电、远程传感器和嵌入式汽车应用大多用开关模式充电器供电。
传统上,跟踪器中面向电池的备份电源管理系统由多个IC组成,包括一个高压降压型稳压器和一个电池充电器,还有所有分立式组件,这绝不是一种紧凑的解决方案。因此,早期跟踪系统的外形尺寸不是很紧凑。典型的跟踪系统应用使用汽车电池和单节锂离子电池支持存储和备份。为什么跟踪系统需要集成度更高的电源管理解决方案呢?
①必需减小跟踪器自身的尺寸,在这个市场里,尺寸是越小越好;
②要求对电池进行安全的充电和为IC提供针对电压瞬变的保护、需要拥有系统备份能力以应对系统电源消失或发生故障的情况、以及为通用分组无线业务(GPRS)芯片组相对较低的电源轨电压(~4.45 V)供电。
三、电源备份管理器
一个满足前述要求、集成了电源备份管理器和充电器的解决方案需要具备以下特点:
1、同步降压型拓扑以实现高效率;
2、很宽的输入电压范围,以适合各种输入电源,还要针对高压瞬态提供保护;
3、适当的电池充电电压以支持GPRS芯片组;
4、通过内置充电终止(无需微处理器)简便和自主地运行;
5、PowerPath™控制——发生电源故障时,在输入电源和备份电源之间实现无缝切换,如果发生输入短路,这项控制功能还需要提供反向隔离;
6、提供备份电池,当输入消失或出故障时为系统负载供电;
7、由于空间限制,需要提供占板面积很小的扁平解决方案;
8、先进的封装以改善热性能和空间利用率。